Enhanced electromechanical response of ferroelectrics due to charged domain walls
نویسندگان
چکیده
While commonly used piezoelectric materials contain lead, non-hazardous, high-performance piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered inactive with regards to the piezoelectric response and, therefore, are largely ignored in this search. Here we demonstrate a mechanism that leads to a strong enhancement of the dielectric and piezoelectric properties in ferroelectrics with increasing density of charged domain walls. We show that an incomplete compensation of bound polarization charge at these walls creates a stable built-in depolarizing field across each domain leading to increased electromechanical response. Our model clarifies a long-standing unexplained effect of domain wall density on macroscopic properties of domain-engineered ferroelectrics. We show that non-toxic ferroelectrics like BaTiO(3) with dense patterns of charged domain walls are expected to have strongly enhanced piezoelectric properties, thus suggesting a new route to high-performance, lead-free ferroelectrics.
منابع مشابه
Formation of charged ferroelectric domain walls with controlled periodicity
Charged domain walls in proper ferroelectrics were shown recently to possess metallic-like conductivity. Unlike conventional heterointerfaces, these walls can be displaced inside a dielectric by an electric field, which is of interest for future electronic circuitry. In addition, theory predicts that charged domain walls may influence the electromechanical response of ferroelectrics, with stron...
متن کاملAtomic-scale mapping of dipole frustration at 90° charged domain walls in ferroelectric PbTiO3 films
The atomic-scale structural and electric parameters of the 90° domain-walls in tetragonal ferroelectrics are of technological importance for exploring the ferroelectric switching behaviors and various domain-wall-related novel functions. We have grown epitaxial PbTiO3/SrTiO3 multilayer films in which the electric dipoles at 90° domain-walls of ferroelectric PbTiO3 are characterized by means of ...
متن کاملFerroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites.
Organometal halide perovskites have been intensely studied in the past 5 years, inspired by their certified high photovoltaic power conversion efficiency. Some of these materials are room-temperature ferroelectrics. The presence of switchable ferroelectric domains in methylammonium lead triiodide, CH3NH3PbI3, has recently been observed via piezoresponse force microscopy. Here, we focus on the s...
متن کاملMechanical and Electrical Control of Charged Domain Walls in Ferroelectric Materials
Charged domain walls (CDWs) in ferroelectrics, as a result of “head-to-head” or “tail-to-tail” polarization configurations, are of significant scientific and technological importance, as they have been shown to play a critical role in affecting the atomic structures and controlling the electric, photoelectric and piezoelectric properties of ferroelectric materials. An understanding of the local...
متن کاملReal-space phase-field simulation of piezoresponse force microscopy accounting for stray electric fields
Piezoresponse force microscopy (PFM) is a powerful scanning-probe technique used to characterize important aspects of the microstructure in ferroelectrics. It has been widely applied to understand domain patterns, domain nucleation and the structure of domain walls. In this paper, we apply a real-space phasefield model to consistently simulate various PFM configurations. We model the PFM tip as...
متن کامل